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We derive spectral necessary and sufficient conditions for stationary symmetric stable processes
to be metrically transitive and mixing. We then consider some important classes of stationary
stable processes: Sub-Gaussian stationary processes and stationar stable processes with a har-
monic spectral representation are never metrically transitive, the latter in sharp contrast with the
Gaussian case. Stable processes with a harmonic spectral representation satisfy a strong law of
large numbers even though they are not generally stationary. For doubly stationary stable processes,
sufficient conditions are derived for metric transitivity and mixing, and necessary and sufficient
conditions for a strong law of large numbers.
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1. Introduction

Stationary symmetric a-stable (SaS) processes have been characterized in [12]
and form a richer, and therefore more unyielding class of processes than the
stationary Gaussian processes. For instance, while all stationary Gaussian processes
which are continuous in probability have a harmonic spectral representation, this
is not so in the stable case; and when 1 < a < 2 the class of SaS moving averages
is disjoint from the class of regular SaS processes with a harmonic representation,
whereas in the Gaussian case, these two classes coincide (cf. [5]).

Using their description developed in [12], we derive necessary and sufficient
conditions for stationary SaS processes to be metrically transitive (Theorem 1) and
mixing (Theorem 2). We then consider some important special classes of stationary
SaS processes. We show that sub-Gaussian stationary processes are never metrically
transitive (Theorem 3). SaS moving averages are of course mixing, and stationary
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2 S. Cambanis, CD. Hardin Jr., A. Weron / Stable Processes

SaS solutions of linear, constant coefficient, stable stochastic differential equations
are strongly mixing; the latter is the continuous time analog of a result in [13] for
discrete time autoregressive SaS processes and is established likewise. Stationary
SaS processes with a harmonic spectral representation are never metrically transitive
(Theorem 4), in sharp contrast with the Gaussian case. Also SaS processes with a
harmonic spectral representation satisfy a strong law of large numbers (Theorem
5) even though they are not generally stationaiy; t?.is is an L,, analog of results in
[10] for L-stationary processes. Finally in Section 6 we introduce doubly stationary
SaS processes-a new class of SaS stationary processes with "stationary" spectral
representations which includes Gaussian, a-sub-Gaussian and SaS moving average
processes-and give sufficient conditions for metric transitivity (Theorem 6) and
mixing (Theorem 7), as well as necessary and sufficient conditions for them to satisfy
the strong law of large numbers (Theorem 8).

We concentrate on real processes defined on the real line, but similar results hold
for real sequences, as well as real processes defined on certain more general groups
(see e.g. [21] where ergodic properties for harmonizable SaS processes on LCA
groups are discussed). The assumption that the process is real is needed when
considering metric transitivity and mixing, because of the use of the dense set of
trigonometric polynomials (cf. [ 19, p. 163]), but is of no significance when consider-
ing laws of large numbers.

We now introduce some basic notation and properties used throughout the paper.
A real random variable Y is SaS, 0< a ! 2, if E exp(irY) exp(-c, Irl") for all r
and some cl _- 0. A process X = j X,: -c < < cc} is SaS if all finite linear combina-
tions 1 a,X,, are SaS. For a SaS random variable Y, set I Yl1,, .c, Then 1 I1j,'"
defines a norm in the case I - a -- 2, and a quasi-norm in the case 0< a < 1, on the
linear span of the SaS process X, J'(X), which metrizes convergence in probability.

Also, for 0 - p -- a,

(El YIr)' = Op, a II 1,,
where the constant (Op, a) depends only on p. a and not on Y [221. Stationary
SaS processes X with 0< a < 2 have tinite dimensional characteristic functions Of
the form

E exp i aX, } exp - V a.U, } (1)

and thus the following spectral representation in law

IX,.--c, t . I I tt,d6l(A)dZ(A ),-x- t - x2)

1121. Here ( F, , u ) is ameasure space. 6 L., I F, 1, u) f - l_.. I , j I , -t

is a group of ison,tries on L..p.), and Z is the canonical independentlN scattered
SetS measure on I 1: . u ). i.e. for all disjoint sets E,.. , 1., 1 of tinite is-measure.
Z(I/ F, Z( f- I are independent with F explirZ( I, 1- - exp jri"M F, ), so hat.
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for all fE L,(IA),

E expji J fdZJ=exp-Vf"'.

Denoting by .f = o'X,, -oo < t < col the o-algebra of X-measurable events, the
shift transformation associated with the stationary SaS process is defined in the
usual way for all X-measurable (i.e. 5v -measurable) events and random variables,
so that e.g. g(X ....... X,) shifted by T becomes g(X,,,.. .. , X,,,) (cf. [19]). For
the notions of metric transitivity and mixing, and for laws of large numbers, it is
necessary that the process 177,, -00< T<0} obtained by shifting an X-measurable
random variable 7 be measurable. This is the case if the original strationary SaS
process X is measurable, or has a measurable modification (cf. [19]). In view of
the following property we assume without further notice that the group I U,} is
strongly measurable on all of L"(1A) and that As is (r-finite.

Theorem 0. For a stationar, SaS process X with spectral representation (2) the
following are equivalent:

(i) X has a measurable modification,
(ii) X is continuous in probability,
(iii) { U, } is strongly measurable on F A -Pj U,. ),'.,
(iv) I U,} is strongly continuous on F

Proof. By [6], X has a measurable modification if and only if the map L: R -. L, (As(
given by L(t) = U, is measurable, since the (quasi-) norm 11 " on Yf(X) metrizes
convergence in probability, and by (1) the linear extension of the map X, - U, b is
an isometry of .1(X) into I.(M). If L is measurable, its range is separable, and we
may thus assume without loss of generality that (E, 1, /A) is rr-finite. More sig-
nificantly, measurability of L implies measurability of the map t- /f for each
.f F, i.e. strong measurability of the group (U,I on V This, how -
ever, implies the strong continuity of {UJ on F (see [8, p. 6161), and hence that
X is continuous in probability (since X, -X,, in probability if and only if
111 -, L,,(b,11 ,,. -0). Thus (i) =:,(iii)=:,(iv):4(i) and the proof is complete by the
well known property (ii)==>(i)- r]

That i Iimplies (ii) when a! -2 (in fact for all weakly stationary processes with
finite second moment) was shown in 17].

2. Metric transitivity

A stationary process X is called metrically transitive or ergodic if any of the
follo ,ing equi-,alent conditions is satisfied (cf. [91): tiCthe shift invariant measurable
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sets J of X have probability zero or one; (ii) for each X-measurable random
variable 17 with EI107I<0c),

liJ,_ 7 T =E7 a.s. (3)

where 17, is 17 shifted by 7; (iii) whenever Aeo(X,, t-0), B EO(X,, t-0) and B,

is the event B shifted by 7,

lim -L P(AnB,)d= P(A)P(B) a.s. (4)

By a result of Maruyama and Granander [19, 9], a stationary Gaussian process
is metrically transitive if and only if its spectral measure has no atoms. For general
stationary stable processes, we have the following characterization.

Theorem 1. A stationar,, Sa S process X with 0 a 2 and spectral representation
(2) is metrically transitive if and only if for each h E s-p U,db, - OC < t < O }.,. ,.

fir -n I- f h - hl di 21hII: (5)
T

and

Ilim lUh- hL dr = 411h11 (6)

Proof. As in the standard proof. for Gaussian processes, it suffices to have (3) for
r.v.'s 17 of the form 17 = expfi " V% aX, ], and this is where the fact that N is real
is used (see [19] or [91). Then, putting h-( ,, a ,,)d , we have 17,
exp[iJ. U,h dZI and

Yt- r , d-r exp i L:,hdZ dr.

By Birkhoff's theorem [19], Yr - E( 1] j) - Y. a.s. Thus (3) is satistied, i.e. I, - trI,

if and only if El Y, 12 EY, 1, if and only if lim , F:Y, 2 lim, I F, But

/Y, I exp[ - IIU hll:: dr expI t1hll1,

and

t:y, -" J f exp - I (. I , )h1:: 1 dr dr.

Since xj + yi"-x - I- is a positive definite function of % and i. ,I h)(A

( 1 ',h )(A )!"- I - I1.',,ih I A 1" is a positive definite function of r and ir (or each
A. and thus so is its u-integral over F: 211hll' 1 I U, ., ih 2.' Since the latter
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depends only on the difference T- r, and is continuous, we have by Bochner's

theorem

2 11 h t"- ( , -tV/,,lh " e .. ... d,,u)

where i, is a finite symmetric measure. Then proceeding as in 19, p. 771, we obtain

E II, I: T . exp f e" dv(u d 7dr

__I e+'''l di u

k T-, J f,J If dI
I x  I 'C

I-.s I a

where v' is the k-fold convolution of . It follows that N is metricalk transiti.

if and onk j , 0M - 0 for all k I land all h, spU',(h, 1 . i- x } I-, (M) i

Since the function J e-' dii u 2I11h : II'.h h ' is e\en, we hae h\ the

in\ersion formula

I{t)[ 2lh111V lir I .h hi drI -, "7" f,

and thus a()[ 0 if and onlk if ( I is satisfied. Also

a' 1) a'l di4i x_ ' { i'}r a' _x "ii lflnm etriL,

Iim /12 h ' h h : dr 1 ,h ,enerN theorem I ]

4/. "i 4 / 'lhm I 1 h h d7 f lina I 1 / 1 ' d7
'., l" ' y

from which it follov, that av A1) 0). k I, 2, if and onlk ifi i and 10) are satistied

the proof is completed hN noting that i from the abo\ e calculation i 1. I ni p ( h1 p1r,

v has no atoms and thus a''[1)  0 for all k .2.

When a stationar\ Sa S process N is metricalk translti\ e we can usc lirkhotl',

theorem to estimate its covariation function which plays a role analogous i.) that [ ]

of the cosariance when -- 2 (41. Indeed when I - p- (Y - 2 we ha~e

NI N J ,' ': dt. d 1:1 A'.\" -} ('P(p, itr 'Il .\ ,, : 4' '

where x I/, signi v) and the equality follows from [31. For r 1 this ga\es the

scaling constant of the process: 4

S ,, dt- F ,'X,,I -- ("(p, ( ) II ,,'j,.

i+ / .o
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where R(t, s) is a positive definite function, or equivalently, if X, = A 1 1 2G,, -0 < t <
x, where A is , ositive a/2-stable and independent of the Gaussian process G which
has mean zero and covariance function R. We show that stationary sub-Gaussian
processes are not ergodic.

Theorem 3. Sub-Gaussian stationar) processes are never metrically transitive.

Proof. Since for a zero mean normal r.v. we have E1I" = D,(E 2)- 2, where the
constant I), does not depend on E, it follows that

F exP i a, aX,} I exp{ - [,E(1 a,,G)1

f N
=exp -2 " D,, E Va G ,

Hence

, -- , x {2 1),," U,G,,dZ,-x t<x1

where (i. I ',,and Z is the canonical independently scattered SaS measure on
f 1,. P. Since X is stationary, so is G. Checking condition (5) with h = G,, we have

I -h h'I:dr - U FIG. d,," d - D f I G,-G,,II" dr

,,(21 R (0 - R ( 7 i 1 d7

h ~2[ ': >f 2[ Rt)-' d 7 se

j), R l'
T ~ 2[O-R R (" d

/I t . l I ,I f [I R 7 J d-)d e s

.,°~ ~ ("!i ROJ 21ii

, herc r) e '  ttpIA . and the inequalit, is strict for 0. Ik- 2 e\en when
)p (). lence condition 5) is not satisfied and A cannot be ergodic.

I hc ergodic decomposition of a suh-(au,ssiI proce,,s can he easil , described

in terms of' the ergodiL decomposition of the corresponding (.aussialn process (
\,lci.h m.\ or nia\ not he rnctricall\ transiti\e using the fact that. modulo null



8 S. Carnbanis, C.D. Hardin Jr., A. Weron / Stable Processes

sets, the o-field of invariant sets of X equals the smallest u-field containing the
o-field generated by the a/2-stable r.v. A and the c-field of invariant sets of Y.

5. Fourier transforms

We say that a complex SaS process X has a harmonic spectral representation if

X,= e"' d W(A), -c

where W is a complex independently scattered SaS measure on (R', A', /), .
finite. Then for every complex fe L (t(),

E exp{i Re[f -fdWI = exp{- f IRe[f(A) e°]l" dv(A, 0)

(10)

where v is a measure on the Borel subsets of R' x (-7r, in] with a marginal 1 : v{ B x

(-r, ir]} -M1A(B) [14, 2]. X is stationary if and only if the measure W is rotationally

invariant, i.e. the distribution of the process {e" W(B), BE 13} does not depend on
'k, in which case v= A x (Leb/27r) and forfE L. (A) we have

E exp{iRe[J , f dW} =exp{-C. JIfI dA}

where C, = (2 7) '1', Icos 01' dO. Unlike the Gaussian case a = 2, where all station-
ary Gaussian processes which are continuous in probability have a harmonic
representation, there are stationary SaS processes with 0<a<2 which are
continuous in probability but do not have a harmonic representation, such as
sub-Gaussian processes and moving averages of SaS processes with stationary
independent increments [5].

For a real (stationary) SaS process X we say that it has a harmonic representation
if

X, = Ref e'A d W(A)

where W is as above (and is rotationally invariant). We show that when 0< a < 2
such processes are never ergodic, in sharp contrast with the the stationary Gaussian
processes (a = 2) which are ergodic if and only if the spectral measure M has no
atoms. This has also been indicated in [17]. Even though these processes are not
ergodic, their spectral measure A, can be estimated consistently under the usual
assumptions [ 18].
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Theorem 4. A real stationary SaS process with a harmonic representation is never
metrically transitive when 0 < a < 2.

Proof. With some minor adjustments in the proof of Theorem 1, we have that X

is metrically transitive if and only if

I-fT 11(ei"A - 1)h(A)I2.dr-241h1,1'1

T 0F

for all complex h E LQ (I,). But

T AfT 7-AII(e' -1)h(A)IU d= Ih(A)lI'T{4 12 sin- dr dM(A)
2- I

= 1 Ih(A ){" -- 12sinuldu d (A)

---- "-- 12 sin uj" du - A hi" dA

AD, Ihl" d,..

Note that when a = 2, D 2 = 2 and thus (11) is satisfied provided A{0} = 0. We now
show that when 0< a <2, D, <2, and thus (11) is not satisfied and X is not

metrically transitive. Indeed, by Jensen's inequality we have

D,, j 12 sin ul" du

I J (12 sin ul 2),2 du f  12 sin u12 du)
"T ) )r 0

=2" 2. 0

We now turn our attention to laws of large numbers (LLN). We consider complex
processes from which the results for their real parts follow immediately. Let X be

a complex SaS process with a harmonic representation. It is easily seen that

f X, d tJ= f e"' dtIdW(A)T T I (

- f I ol(A ) dW(A)W{}

in probability. Thus X , tisfies a weak LLN if and only if W{0} = 0. When X is
stationary (i.e. W is rotationally invariant) and I <a "- 2, then by Birkhott's theorem



10 S. Cambanis, C.D. Hardin Jr., A. Weron / Stable Processes

the above convergence is also a.s., and X satisfies a strong LLN (SLLN) if and only

if AJO}=0. Following the approach in [10], where L,-stationary processes are

considered, we show that this latter property remains true even when X is not

stationary.

Theorem 5. Let X be a complex SaS process with harmonic representation and
I < a - 2. Then

1 X, dt W{0} a.s.
T f. l~

and X satisfies a SLLN if and only ifL{0} = 0.

Proof. The proof parallels that of theorems I' and 2' in [10] as outlined on pp.
303-304. Here we only point out the main adjustments necessary when I < a < 2.

The first step is to show that it suffices to establish the a.s. convergence along the

integers since

Zk sup fX, dt- X, dt -- 0.

Indeed from

Z' -- k X, I d t + IXJ dt
+I I

we obtain, for I p < -,

EPW P1k- l E I f' 1X1dt} +- E { H dt{ Z}'" k + I " I , I kt I

By stationarity EUX,I' =Const< x for all t, and thus {EZ'}l' PConst k so that
V EZ x from which it follows by the Borel-Cantelli lemma that Zk -- 0 a.s.

The second step is to show that, since

I fk ,d = f" e' KA _Id (

it suffices to show

-dW(A) -- W{O} a.s.

,-A ikA

since the remainder R, I (e ' -A I )(ikA) d W(A) tends to 0 with k a.s. Indeed
we have

1 sin kA/2 d A Const
J" kA/2 k
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Now with X=JfdW, it follows from (10) that ilRe XiK

f. J1',IRef(A) e'"l" dv(A, 0). The expression for 1m X11I' is then obtained simply

by replacing f by -if It then follows that

EIXIP EIRe X1P + Ellm XIP = Const{l lRe XSiP + 111m XiP}

=Const{(JY. IJ Ref(A)e"O" d(A, ))

+ (f~ f lRe- if(A ) e'l" dv(A, O)) ' }

< Const 1fjl p = Const I1 XII . (12)

Thus for each F>0 and I<p<a,
EI~I~ IRkI p _ Const

P(I R, > F) d Const -- n- t

and R, -- 0 a.s. follows from Borel-Cantelli.

The third step is to show that it suffices to establish a.s. convergence of Y,, along

the subsequence k = 2" since sup!"-- 2" 'IYk- -Y2" I -- 0 a.s. The fourth step is to

show that

Y1 J dW(A) - 0 a.s.
- 1l-[ 2" n

and the final fifth step that

2 dW(A) -- W{0} a.s.
fAl 2" n

These steps are established by adjusting Gaposhkin's arguments in ways similar to

those exhibited in steps one and two-and need not be shown here.

We finally show that W{0} = 0 if and only if 11 W{0}]]1 = A{0} = 0. This follows

from (12) and

J1X 11,!c- [lRe x11,,+111m X11,, = Const{(EIRe X1P)"/P+(EIltm XJP)"/

!c- Const(E IXIP) ' ° . El

6. Doubly stationary processes

We introduce in this section a new class of stationary SaS processes which we

term doubly stationary. They are, loosely, those SaS processes whose spectral

representations are themselves stationary.
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To be more precise, let (E, 2, A) be an arbitrary (finite or infinite) measure space

and let f,: tc G} be a collection of measurable functions on E. G is in general

some group-for the purposes of this paper, we take it to be Z or R. Call {f,}
stationary if the 1-distribution of the vector (f,,..., ....) is independent of s G G

for each fixed choice of n and tjE G. A SaS process will be called doubly stationary
if it has the same distribution as some process {X,=fEf,(A)dz(A): tE G} where
{f,} g L,(E, 2, g) is stationary and Z is the canonical independently scattered

random measure on (E, 2, 1A). It is clear by checking characteristic functions that

doubly stationary SaS processes are also (strictly) stationary. Example (iv) below

shows the converse does not hold.
For stationary {f,} we may find, just as in the case of a stationary process, a group

of measure-preserving set transformations { T,} of Y = r{f,} such that f, T,fh. (We
also denote by T, the induced map on measurable functions.) Conversely, any group

of measure-preserving set transformations defines stationary functions { T,f} for

arbitrary measurable fo. Thus a SaS process is doubly stationary if and only if it

has a representation as in (2) of Section 1, where the group {U,} is induced by such

a group {TJ. This equivalent definition will be more useful for us, if not as
picturesque.

Examples. (i) Every mean-zero stationary Gaussian process is doubly stationary. To

see this, let {X,} be a mean-zero stationary Gaussian process on (12, J, P) and let
Z be the canonical independently scattered Gaussian measure on (E, 2, )U) A

(0, J, P). Then { Y, A J X,(w) dZ(to)} is seen (by checking characteristic functions)

to have the same distribution as {X,}. Hence {X,} is doubly stationary.

(ii) Every stationary sub-Gaussian process is doubly stationary. Let {X,} be a-sub-
Gaussian on (fl, ., P), represented as X, = A/ 2 G, as in Section 4. As seen in the

proof of Theorem 3 in Section 4, {X,} is distributed as {Y, Af cG,(w)dZ()}

where Z is the canonical independently scattered SaS random measure on (n2, J , P)

and c is a constant depending on a. {G,} is stationary since {X,} is, and thus fX,}

is doubly stationary.
(iii) All SaS moving averages are doubly stationary. In this case, the group fT,}

is the translation group on (G, Haar measure).
(iv) There exists a stationary SaS process, continuous in probability, which is not

doubly stationary. For simplicity we take a = 1, although this example may be altered

easily to work for each ac(0,2). Define U,:L'[O, 1]-L'[O, 1] for real t by
(U,f)(x) - 2'x 2'1f(x 2 ). It is easily checked that {U,} is a strongly continuous group

of linear isometries, so that {X, -J0 U, 1 [01) dZ} is a stationary SaS process con-
tinuous in probability. Here, Z is Cauchy motion on [0, 1] (the canonical SIS

independent increments process on [0, 1]). We claim that {X,} is not doubly

stationary.
For, if {X,} were doubly stationary, we could find a measure space (E, 2, 1), a

group of measure-preserving set maps T,: 2; - 2; and a function k L V (g) such
t -+ TO is a spectral representation for {X,}. Since t-+ U, 1 10 .1 1 is also a spectral
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representation for {X,} we must have that III AjU,,foIIL("o.I= 2AjTOIJL°, I for all
choices of Aj and tj. Hence the map U, 1,0 1 -* TO extends to a linear isometry of
§-{U,l[oII}L"IolI onto 9P{T,}L",. This isometry in fact extends to all of L"[0, 1]
by [11, Corollary 4.3], since Uolo.,1 1=[l(), and U1 lo.,11(x) 2x are both in
p{U,1o,1 }. Call this extension M. Again by [11, Corollary 4.3], M has the form

(Mf)(x)=h(x)(Sf)(x) where S is induced by a regular set isomorphism of (A,
Lebesgue) to (X,/p). Since MU, 1 or,'= Tsk we must have that, calling id(x)=x,

T,Od = MU, 1l[o. 1 = AM ( 2id 2' - ) = hS( 2'id 2' - ) = 2'h[ S(id) ]2'- .

Since 0 -id< 1 a.e., we have that 0 S(id) < 1 a.e. [A]. If 0- x < I we have that
2'Xx 2'-I --0 as t--,co. But TO must be equidistributed for all t (since T, is measure-
preserving), and 2'h[S(id)] 2'- ' by the above is not, since by choosing t large enough
we may for any e>O force A{2fh[S(id)]2-I<r} as close to g(E) as desired.
Therefore {X,} cannot be doubly stationary. F1

Remark. In view of the representation (2) and the fact that groups of isometries on
V for a 3 2 are determined (essentially) by groups of transformations on the
underlying measure space (see [16] or [1 I] for more details), it is natural to expect
that many stationary SaS processes can be shown to be doubly stationary by
"appropriately altering" the measure space upon which I U,) is defined.

We now turn to the ergodic properties of doubly stationary processes. For the
remainder of this section, we assume that {X,} is a doubly stationary SaS process
with spectral representation t'-- T,<4 where {T,) is a strongly measurable group
induced by a group of measure-preserving set transformations on the arbitrary
measure space (E, X, A), and c c L" (1). We also assume WLOG that I = o{ T,44 }.
Denote by J the invariant o--field of {T,}, J = {Ac X: TA = A for all t}.

The first result gives a sufficient condition for metric transivity. Note that condition
(13) below on our "shift" {T,} of I and condition (4) of Section 2 on the shift in
(0, . , P) are of a fundamentally different nature-(13) is a kind of "asymptotic
disjointness" condition, while (4) is a kind of asymptotic independence condition.
This should not be too surprising, however, since it is known (see [20]) that two
jointly SaS r.v.'s are independent if and only if their spectral representatives have
disjoint support.

Theorem 6. {X,} is metrically transitive if for all sets A, B c of finite p-measure

I r
lim j (A r TB) dt = 0. (13)
1-' Tj,

Condition (13) guarantees that p.(E)= oc, for otherwise (13) would be false for
A = B =E.
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Proof. We first claim that it is enough to verify (5) and (6) of Theorem I for all

simple functions g. The following inequalities are valid for real x and Y:

lxl"-ivl"-<Ix+yi'l"<-Ixl'+ yl" for 0<a< 1,

lxj"- 'y"- aix+yl" 'jvl- x+vi" lx-4-l"+ I"+, xl" 'jyj for 1 <a 2.

The first is well-known and the second follows from [181. Call x= T,g-g, y=
g - h + T,( h - g) and z = x + y = T,h - h, and integrate the inequalities (using Holder

in the second) to obtain

I <a i2.

Now note that for arbitrary fixed h, jjyh,, can be made uniformly small in t by
choosing g simple with 1lh-gl,, small, and that 1lzll, is uniformly bounded in t.
These observations coupled with the inequalities above show that if (5) holds for
all simple functions g, then it holds for all h E p{ T,0} (and in fact for all h c L"(j)).
Squaring the inequalities above shows that the same thing can be said for condition
(6). The claim is therefore true.

Now let h=Z 1 CIIc L"(), with {A,} a partition of E and A,)={h =0} (and

of course c1 1=0). Then 1 (A,) < c for j - I and A (A,) = oc. Call A,,(t) = TA, r A,.
Then T,h -h =1 C, I - c,TA. =0A, _ (C, -C,)IA,,, where {A,,(t)} partitions E,
and we have

lIT, h-hill::=  v jc,-€,j"A(a,,t)). (14)

I I

Condition (13) guarantees that

uir T' llT7,/,- hiat
I

lim T ic, l",(A,())+ c,(A,( dt. (15)

It is not difficult to show that( 13) also guarantees that lim . T '1 0,( T,R- BO) d t
is u(B,) [resp. u(B)] if B, and B" have finite measure [resp. B, and B, have finite
measure]. Thus (15) shows that

lir T 'J 1Th-hi:: =V c,"k(A,)+V lc,i",i(A,)=2ihj::

and so (5) holds.
To show (6) holds, note that from (14),

iT, h-hl - c I -," Ck-Cel"uI(A,,(t)A(Ak.,()).
k, 1 0
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Condition (13) applies to show

lim T 1! T~h-h 1"d t

lim T

+ (., ( t) (A ,, ) + p(A,,,( t))p(A ,, I)I

p(A,,)) Mp (A,,() ( d 1. 1 if

It can be shown with a little thought and a little hit more computation that Condition
(13) also guarantees that lim ., 7 ' !I,' ; TB , .B ,)p ( TI B. , ) dt is equal to
,l B, )A( Bo [resp. A(131 B,) M a;/( B,)AA( B,); M(l B.lp.I B,,)l it' B,. ff. B;. lB, I rep.

B,. B,. B', B.; . .H;, H, B,. B,, I?'. Haj hase finite measure I hus 1(10i shoks
that condition (6) holds, and A,} must be metricallN transitive.

We now give an analogous sufficient condition for mixing. As in the last result.

the condition on JT,} here in 117) is of a fundamentall\ different nature than that
on the shift of the process in (7) of Section 3.

Theorem 7. .N,} is mi.\ing il for all A. r T,b: - O(. 8 ,r( d, I (of lb litti

p-measure.

lim M A .... TB)-O. - 0.

Again. (17) guarantees that pt I .

Proof. We \&ill serifv 19) of Theorem 2. Appling arguments similar to those in the
proof of Theorem 6, \&e see that it is enough to hase (91 for simple g and h in

L) p ). Let A supplg) Jg 4 0 . B supp( /i, and let g and h be hounded h\
M. Note that suppi Fh) -- 1,B and that A1 and B are of finite measure. Since

111g+ Thjl:: - lgl:: - hi: - 2M '",M A F I .

(171 shows that M9) holds and thus that .X, is mixing.

We now look at laws of large numbers for douhl,, stationar\ processes. -or
simplicity wAe assume that a -I. so that ,: ',, and wAe ha\ c (as in Section 5I
that JX,} satisfies a SLLN if and onls if it satislic, a \&eak 1.1 N.

Note that for A, - ', 7",b dZ, T ' ,, dI J,( i r ' C,;d ) d/, the change of
integration being justified as in 14, Theorem 4.61. But F ', /',,5 dt conerges in
L" to !:I.'l)J) by the mean ergodic theorem (see Theorem C of the .\ppendixI So
by the definition of the stochastic integral, T f , di conerges in prohahilits.

and hence a.s., to 4'b 1) dZ. This pro\ es

Theorem 8. Let I - a - 2. Tien a - . x , T ' J V, dt cin'ergei a. s. and tit prohahtlii

to a random variah,' di.strihured as f7, (h J ; dZ. Thu\ {.A, ,tisties th, S[ I N if

and on/v if 17 d . ) 0 0 a.e.



1 .% ( umhant. ( I) #iardin .Jr . 14 eri,, .Stah " I' ,

It follow,,, for r - 2, (hat a nee'earv condition for netnrtr trufll lllJ'l of ,

iIt f6 (,J I - O and that i/ et-erv set of I has either zero of infnite v -meaure. then

.XJ sa fies the SL[N.

These result,, allow u, to construct example-, ,ho',ing that neither ofthe conditions

"ergodicit, of I r, " or "metric transiti'it. of JXJ" implies the other Io mention

one such example, let I-it . 2. TJ he translation b' tI mod Ii on [1. I]. ,!,

_ I , 1!, ., ind A, (' F,, dZ. Then ti I T, i% erxodit (it X;j saisfies the
S LLN, and <iii I.\X, I% not metrh allv tranwutne. (it is oh iou,,. and Iii) followk s from

i) and rheorem , since It- i h i: 46 I I vi) t . To % eri\ (imil, %4e note that

im I h t : dt Tv!h) ' dt

2 di t 2' I Iidt

and thus (ondition 15 in Theorem I does not hold

Appendix

%e collect here -some facts from ergodic theor, needed throughout the paper

Although he expect that nothing in) this preentlaion i ne.%. %e, a alind no reference

for Theorems B and ( ) e assume that all icontinuous parameter) groups are

,trongl. measurable in order to he ahle to deline the appropriate integrals, , ee IS.

pp 6 6S611 We state Theorem,, - and ( in the continuous case. hut their discrete

'ersions are also true

Fheorem A. I I e I ; he a group (i iometrte' on I ( 1-, -. ,u v. 1where i I. . j i is an
arhitrari measure %pa''. antd p I hen for all th 1 "io i, I ' f " I .(h dt - P6 as

I . where the convergence is a. e and in I. and P1 is a prvlfr( Ioln operator oitvo
Vf )Il ,I" ilu I , I- l!or all I

Proof. The strong con% ergence follo%.,% from , p 6621 in the discrete case, and IS.
p hXQI in the continuous case That P is such a projection follo%,, from IN, p 662

and p hSSI. I1 shos' that the con',ergence i, aiso a~e

When I I is induced h, a group of meaure-preer,.ing ,et transformation%, .

on I-. - .! t. Ae can identil, the limit operator 11 abo,,e In the case p I. I . x , it

i, %ell kno%,n that P I,, the conditional expectation operator gi'.en the in% ariant sets

O 1 1, In the case it i i . it is the appropriate generahiation of,,uch a conditional

expectation. %hich %,e nok des.rihe
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Theorem B. For (E, 1, u ) an arhitrarv measure space and 2. a *uh-o--field o , flt

orthogonal projection of L-( 2:) onto L "( 2,, has a unique eviension hY 'ontinuit to a

positive contracti e projection E( !,,) of LP(2 ) onto 1 2.1 for I- p - 2. F I 2,

is characterized as the unique 2:-,measurahle/lunction in L satis/ving 2 i ,,

f , /do for all A t 1. of.finite measure.

Proof. Denote by Q the orthogonal projection of L'2 I) onto L'i 2,,). For all A
with finite measure and t- L 2-), I., is orthogonal to I Qf and so

f Qidu -J1 1ds. 1181

This characterizes Q in the sense that QI is the unique 2,,-measurable function in

L' which satisfies (18). Relation (18) also shows that Q is positive, i.e. Q1 -( ae

if It 0 a.e., and Q11, - Q I . This, coupled with IS) and the fact that the support

of anN f , L' is ir-finite, shows that !lQf' IJ . 1 for anv V I ' I '. Q now extends

b, continuitN to a positive contractive projection F . ,,i of l.'2 ) onto 1 (2.,

satisfying 118) for all I , L'. The Ries, (onexitN Theorem I. p. 525] show,, that

the last statement is true with I replaced bh p I p- 2)

It is clear that for p ( I - x, ( 2,,) is the standard conditional expectation

operator E( -I!,,.
We can now state the ergodic theorem needed in Section 6.

Theorem C. Let (1-. 2. A ) he arbitrary, the group I T, i he induced hi a group of

meaure-preertirl, set translormations ti 2. and 4 JA. - T,.A A for all . ,For

(h , L P(i,

T 'f Tdt--f( J i

as T - x. where the contergence i.s a.e. and in L ii i) I • p 2. (or if iii p 1 and

Proof. Theorem A gives us that T J, T, dt converges to a projection P on V

{ L' U: TI I for all t) in the apprmrriate senses if I. p- 2. F-or p I, the
convergence follows from 18. p. 0(,2 and p. 675] for the discrete case, and IS. p. 6S'

and p. 6901 for the continuous case. It remains to identify, P as 1 .lt.

P as an operator on L must be a contraction, being the strong limit of,-ontractions
In a Hilberi space there is but one contractie projection onto a gixen subspace.
namely the orthogonal projection onto that subspace. Since it is eas Ito ,erifv that
At Lr 1... A i. we have that P J I on L', and hence that P 1- tion I
h, Theorem B.
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